Плюсы и минусы профессииВажные качестваГде учитьсяКурсы специалистов по обработке, анализу и хранению больших массивов данных (Data Scientist)Зарплата на 19.08.2019

Data Scientist — специалист по обработке, анализу и хранению больших массивов данных, так называемых «Big Data». Профессия подходит тем, кого интересует физика, математика и информатика (см. выбор профессии по интересу к школьным предметам).

Data Science – наука о данных на стыке разных дисциплин: математика и статистика; информатика и компьютерные науки; бизнес и экономика.

(С.Мальцева, В.Корнилов НИУ «ВШЭ»)

Профессия новая, актуальная и чрезвычайно перспективная. Сам термин «Big Data» появился в 2008 году. А профессия  Data Scientist — «Учёный по данным» официально зарегистрирована как академическая и межотраслевая дисциплина в начале 2010 г. Хотя первое упоминание термина «data science” было отмечено в книге Петера Наура 1974 г., но в ином контексте.

Необходимость возникновения такой профессии была продиктована тем, что когда речь идет об Ультра Больших Данных, массивы данных оказываются слишком велики для того, чтобы обрабатывать их стандартными средствами математической статистики. Каждый день через сервера компаний всего мира проходит тысячи петабайт ( 1015 байт =1024 терабайт) информации. Кроме таких объёмов данных, проблему усложняет их разнородность и высокая скорость обновления.

Массивы данных подразделяют на 3 вида:

структурированные (например, данные кассовых аппаратов в торговле);

полуструктурированные (сообщения E-mail);

неструктурированные (видеофайлы, изображения, фотографии).

Большинство данных Big Data является неструктурированными, что значительно усложняет их обработку.

По отдельности специалист по статистике, системный аналитик или бизнес-аналитик не может решить задачи с такими объёмами данных. Для этого нужен человек с междисциплинарным образованием, компетентный в математике и статистике, экономике и бизнесе, информатике и компьютерных технологиях. 

Главная задача Data Scientist — умение извлекать необходимую информацию из самых разнообразных источников, используя информационные потоки в режиме реального времени; устанавливать скрытые закономерности в массивах данных и статистически анализировать их для принятия грамотных бизнес-решений. Рабочим местом такого специалиста является не 1 компьютер и даже не 1 сервер, а кластер серверов.

Особенности профессии

В работе с данными Data Scientist использует различные способы:

  • статистические методы;
  • моделирование баз данных;
  • методы интеллектуального анализа;
  • приложения искусственного интеллекта для работы с данными;
  • методы проектирования и разработки баз данных.

Должностные обязанности data scientist зависят от сферы его деятельности, но общий перечень функций выглядит следующим образом:

  • сбор данных из разных источников для последующей оперативной обработки;
  • анализ поведения потребителей;
  • моделирование клиентской базы и персонализация продуктов;
  • анализ эффективности внутренних процессов базы;
  • анализ различных рисков;
  • выявление возможного мошенничества по изучению сомнительных операций;
  • составление периодических отчетов с прогнозами и презентацией данных.

Data Scientist, как настоящий учёный, занимается не только сбором и анализом данных, но и изучает их в разных контекстах и под разными углами, подвергая сомнению любые предположения. Важнейшее качество специалиста по данным - это умение видеть логические связи в системе собранной информации, и на основе количественного анализа разрабатывать эффективные бизнес-решения. В современном конкурентном и быстро меняющемся мире, в постоянно растущем потоке информации Data Scientist незаменим для руководства в плане принятия правильных бизнес-решений.

как стать data scientist

Плюсы и минусы профессии

Плюсы

  • Профессия не только чрезвычайно востребованная, но существует острый дефицит специалистов такого уровня.  По данным McKinsey Global Institute к 2018 г. только в США потребуется более 190 тысяч Data Scientist. Поэтому так стремительно и широко финансируются и развиваются факультеты при самых престижных вузах по подготовке специалистов по данным. В России также растет спрос на Data Scientist.
  • Высокооплачиваемая профессия.
  • Необходимость постоянно развиваться, идти в ногу с развитием IT-технологий, самому создавать новые методы обработки, анализа и хранения данных.

Минусы

  • Не каждый человек сможет освоить эту профессию, нужен особый склад ума.
  • В процессе работы могут не сработать известные методы и более 60% идей. Множество решений окажется несостоятельным и нужно иметь большое терпение, чтобы получить удовлетворительные результаты. Учёный не имеет права сказать: «НЕТ!» проблеме. Он должен найти способ, который поможет решить поставленную задачу.

Место работы

Data Scientist занимают ключевые позиции в:

  • технологических отраслях (системы автонавигации, производство лекарств и т.д.);
  • IT-сфере (оптимизация поисковой выдачи, фильтр спама, систематизация новостей, автоматические переводы текстов и многое другое);
  • медицине (автоматическая диагностика болезней);
  • финансовых структурах (принятие решений о выдаче кредитов) и т.д;
  • телекомпаниях;
  • крупных торговых сетях;
  • избирательных кампаниях. 

Важные качества

  • аналитический склад ума;
  • трудолюбие;
  • настойчивость;
  • скрупулёзность, точность, внимательность;
  • способность доводить исследования до конца, несмотря на неудачные промежуточные результаты;
  • коммуникабельность;
  • умение объяснить сложные вещи простыми словами;
  • бизнес-интуиция.

Профессиональные знания и навыки:

  • знание математики, матанализа, математической статистики, теории вероятностей;
  • знание английского языка;
  • владение основными языками программирования, у которых имеются компоненты для работы с большими массивами данных: Java (Hadoop), C++(BigARTM, Vowpel Wabbit, XGBoost), Python (Matplotlib, Numpy, Scikit, Skipy);
  • владение статистическими инструментами — SPSS, R, MATLAB, SAS Data Miner, Tableau;
  • основательное знание отрасли, в которой работает data scientist; если это фармацевтическая отрасль, то необходимо знание основных процессов производства, компонентов лекарств;
  • главный базовый навык специалиста по data scientist - организация и администрация кластерных систем хранения больших массивов данных;
  • знание законов развития бизнеса;
  • экономические знания.

сколько зарабатывает data scientist

Обучение на Data Scientist-а (Образование)

Профессию Data Scientist в России можно получить и совершенствовать по специальным программам дополнительного образования, организуемым компаниями, которые занимаются исследованиями в этой сфере.

Курсы

SkillFactory
Одним из важнейших качеств лидера становится умение эффективно использовать эти технологии для развития бизнеса. В рамках специализации студенты решат 85 бизнес-кейсов, выполнят 3 проекта и получая полный набор компетенций от формирования Big Data стратегии до понимания алгоритмов машинного обучения.
SkillBox
Станьте специалистом по анализу данных и машинному обучению, даже если у вас нет опыта программирования. Познакомитесь c технологиями машинного обучения и нейронными сетями, а также получите базовый набор навыков, который откроет путь к построению карьеры в Data Science и Machine Learning. Вы сможете найти интересную работу и показать себя. Дополните свои знания и навыки в программировании. Научитесь создавать аналитические системы и алгоритмы машинного обучения, решать бизнес-задачи и улучшите портфолио мощными проектами.
SkillFactory
Как освоить профессию Data Scientist с нуля? В рамках специализации вы сможете отработать все составляющие профессии: Python, машинное обучение, нейросети и deep learning, основы Big Data и Data engineering. Дополняет программу специально разработанный курс математики и статистики для Data Science и модуль менеджмента.

Вузы

  • МГУ им. Ломоносова, Факультет вычислительной математики и кибернетики, специальная образовательная программа Mail.Ru Group «Техносфера», с обучением методам интеллектуального анализа большого объема данных, программированию на С++, многопоточному программированию и технологии построения систем информационного поиска.
  • МФТИ, Кафедра анализа данных.
  • Факультет бизнес-информатики в НИУ ВШЭ готовит системных аналитиков, проектировщиков и внедренцев сложных информационных систем, организаторов управления корпоративными информационными системами.
  • Школа анализа данных Яндекс.
  • Университет в Иннополисе, университет Данди, университет Южной Калифорнии, Оклендский университет, Вашингтонский университет: Магистратуры по направлению Big Data.
  • Бизнес-школа Имперского колледжа Лондона, Магистратура по науке о данных и менеджменту.

Как и в любой профессии здесь важно самообразование, несомненную пользу которому принесут такие ресурсы, как:

  • онлайн-курсы ведущих университетов мира COURSERA;
  • канал машинного обучения MASHIN LEARNING;
  • подборка курсов edX;
  • курсы Udacity;
  • курсы Dataquest, на которых можно стать настоящим профи в Data Science;
  • 6-шаговые курсы Datacamp;
  • обучающие видео O’Reilly;
  • скринкасты для начинающих и продвинутых Data Origami;
  • ежеквартальная конференция специалистов Moskow Data Scients Meetup;
  • соревнования по анализу данных Kaggle.сom

Оплата труда

Зарплата на 19.08.2019

Россия 50000—200000 ₽
Москва 80000—300000 ₽

Профессия Data Scientist является одной из самых высокооплачиваемых. Информация с сайта hh.ru — зарплата в месяц составляет от $8,5 тыс. до $9 тыс. В США оплата труда такого специалиста составляет $110 тыс. - $140 тыс. в год.

По результатам опроса исследовательского центра Superjob зарплата специалистов Data Scientist зависит от опыта работы, объёма обязанностей и региона. Начинающий специалист может рассчитывать на 70 тыс. руб. в Москве и 57 тыс. руб. в Санкт-Петербурге. С опытом работы до 3 лет зарплата повышается до 110 тыс. руб. в Москве и 90 тыс. руб. в Санкт-Петербурге. У опытных специалистов с научными публикациями зарплата может достигать 220 тыс. руб. в Москве и 180 тыс. руб. в Петербурге.

Ступеньки карьеры и перспективы

Профессия Data Scientist сама по себе является высоким достижением, для которой требуются серьёзные теоретические знания и практический опыт нескольких профессий. В любой организации такой специалист является ключевой фигурой. Чтобы достичь этой высоты надо упорно и целенаправленно работать и постоянно совершенствоваться во всех сферах, составляющих основу профессии.

Интересные факты о профессии

Про Data Scientist шутят: это универсал, который программирует лучше любого специалиста по статистике, и знает статистику лучше любого программиста. А в бизнес-процессах разбирается лучше руководителя компании.

ЧТО ТАКОЕ «BIG DATA» в реальных цифрах?

  1. Через каждые 2 дня объём данных увеличивается на такое количество информации, которое было создано человечеством от Рождества Христова до 2003 г.
  2. 90% всех существующих на сегодня данных появились за последние 2 года.
  3. До 2020 г. объём информации увеличится от 3,2 до 40 зеттабайт. 1 зеттабайт = 10 21 байт.
  4. В течение 1 минуты в сети Facebook загружается 200 тысяч фото, отправляется 205 млн. писем, выставляется 1,8 млн. лайков.
  5. В течение 1 секунды Google обрабатывает 40 тыс. поисковых запросов.
  6. Каждые 1,2 года удваивается общий объём данных в каждой отрасли.
  7. К 2020 г. объём рынка Hadoop-сервисов вырастет до $50 млрд.
  8. В США в 2015 г. создано 1,9 млн. рабочих мест для специалистов, работающих на проектах Big Data.
  9. Технологии Big Data увеличивают прибыль торговых сетей на 60% в год.
  10. По прогнозам объём рынка Big Data увеличится до $68,7 млрд. в 2020 г. по сравнению с $28,5 млрд. в 2014 г.

Несмотря на такие позитивные показатели роста, бывают и ошибки в прогнозах. Так, например, одна из самых громких ошибок 2016 года: не сбылись прогнозы по поводу выборов президента США. Прогнозы были представлены знаменитыми Data Scientist США Нейт Сильвером, Керк Борном и Биллом Шмарзо в пользу Хиллари Клинтон. В прошлые предвыборные компании они давали точные прогнозы и ни разу не ошибались.

В этом году Нейт Сильвер, например, дал точный прогноз для 41 штата, но для 9 штатов — ошибся, что и привело к победе Трампа. Проанализировав причины ошибок 2016 года, они пришли к выводу, что:

  1. Математические модели объективно отражают картину в момент их создания. Но они имеют период полураспада, к концу которого ситуация может кардинально измениться. Прогнозные качества модели со временем ухудшаются. В данном случае, например, сыграли свою роль должностные преступления, неравенство доходов и другие социальные потрясения. Поэтому модель необходимо регулярно корректировать с учётом новых данных. Это не было сделано.
  2. Необходимо искать и учитывать дополнительные данные, которые могут оказать существенное влияние на прогнозы. Так, при просмотре видео митингов в предвыборной кампании Клинтон и Трампа, не было учтено общее количество участников митингов. Речь шла приблизительно о сотнях человек. Оказалось, что в пользу Трампа на митинге присутствовало 400-600 человек в каждом, а в пользу Клинтон — всего 150-200, что и отразилось на результатах.
  3. Математические модели в предвыборных кампаниях основаны на демографических данных: возраст, раса, пол, доходы, статус в обществе и т.п. Вес каждой группы определяется тем, как они голосовали на прошлых выборах. Такой прогноз имеет погрешность 3-4 % и работает достоверно при большом разрыве между кандидатами. Но в данном случае разрыв между Клинтон и Трампом был небольшим, и эта погрешность оказала существенное влияние на результаты выборов.
  4. Не было учтено иррациональное поведение людей. Проведенные опросы общественного мнения создают иллюзию, что люди проголосуют так, как ответили в опросах. Но иногда они поступают противоположным образом. В данном случае следовало бы дополнительно провести аналитику лица и речи, чтобы выявить недобросовестное отношение к голосованию.

В целом, ошибочный прогноз оказался таковым по причине небольшого разрыва между кандидатами. В случае большого разрыва эти погрешности не имели бы такого решающего значения.

Видео: Новая специализация «Большие данные» - Михаил Левин